Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass

نویسندگان

  • Katsuaki Hirano
  • Masahiro Kurosaki
  • Satoshi Nihei
  • Hiroki Hasegawa
  • Suguru Shinoda
  • Mitsuru Haruki
  • Nobutaka Hirano
چکیده

The cellulosome is a supramolecular multienzyme complex comprised of a wide variety of polysaccharide-degrading enzymes and scaffold proteins. The cellulosomal enzymes that bind to the scaffold proteins synergistically degrade crystalline cellulose. Here, we report in vitro reconstitution of the Clostridium thermocellum cellulosome from 40 cellulosomal components and the full-length scaffoldin protein that binds to nine enzyme molecules. These components were each synthesized using a wheat germ cell-free protein synthesis system and purified. Cellulosome complexes were reconstituted from 3, 12, 30, and 40 components based on their contents in the native cellulosome. The activity of the enzyme-saturated complex indicated that greater enzymatic variety generated more synergy for the degradation of crystalline cellulose and delignified rice straw. Surprisingly, a less complete enzyme complex displaying fewer than nine enzyme molecules was more efficient for the degradation of delignified rice straw than the enzyme-saturated complex, despite the fact that the enzyme-saturated complex exhibited maximum synergy for the degradation of crystalline cellulose. These results suggest that greater enzymatic diversity of the cellulosome is crucial for the degradation of crystalline cellulose and plant biomass, and that efficient degradation of different substrates by the cellulosome requires not only a different enzymatic composition, but also different cellulosome structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Pretreated Switchgrass and Biomass Carbohydrates on Clostridium thermocellum ATCC 27405 Cellulosome Composition: A Quantitative Proteomic Analysis

BACKGROUND Economic feasibility and sustainability of lignocellulosic ethanol production requires the development of robust microorganisms that can efficiently degrade and convert plant biomass to ethanol. The anaerobic thermophilic bacterium Clostridium thermocellum is a candidate microorganism as it is capable of hydrolyzing cellulose and fermenting the hydrolysis products to ethanol and othe...

متن کامل

Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.

The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact ce...

متن کامل

Deletion of the Cel48S cellulase from Clostridium thermocellum.

Clostridium thermocellum is a thermophilic anaerobic bacterium that rapidly solubilizes cellulose with the aid of a multienzyme cellulosome complex. Creation of knockout mutants for Cel48S (also known as CelS, S(S), and S8), the most abundant cellulosome subunit, was undertaken to gain insight into its role in enzymatic and microbial cellulose solubilization. Cultures of the Cel48S deletion mut...

متن کامل

Digestion of crystalline cellulose substrates by the clostridium thermocellum cellulosome: structural and morphological aspects.

The action of cellulosomes from Clostridium thermocellum on model cellulose microfibrils from Acetobacter xylinum and cellulose microcrystals from Valonia ventricosa was investigated. The biodegradation of these substrates was followed by transmission electron microscopy, Fourier-transform IR spectroscopy and X-ray diffraction analysis, as a function of the extent of degradation. The cellulosom...

متن کامل

How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313?

BACKGROUND Bioethanol production processes involve enzymatic hydrolysis of pretreated lignocellulosic biomass into fermentable sugars. Due to the relatively high cost of enzyme production, the development of potent and cost-effective cellulolytic cocktails is critical for increasing the cost-effectiveness of bioethanol production. In this context, the multi-protein cellulolytic complex of Clost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016